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Introduction



Why Energy System Modelling?

= Energy sector transformation to mitigate climate change

= Structural changes

» Intermittent renewables increase flexiblility requirements
(temporal, spatial and sectoral)

= |ncreased number of stakeholders

= Energy system models provide insights and support complex
decisions

Why Multiple Objectives?

= Conflicting interests have to be balanced
= Environmental sustainability is multi-criteria concept in itself

= Feasible and “interest-optimal” scenarios to support decisions

Climate
Resources: Change Ecosystem quality:
minerals freshwater and
and met: err acidification

osystem quality:
eshwater

Ecosystem quality:
eshwater
euthophication

photochemkal i rrestrial
ozone creatid ¢

—. 2030 Human heaith:

Bertsch and Fichtner, A participatory multi-criteria approach for power generation and transmission planning, Annals of Operations Research

2016.
Junne et al., Environmental Sustainability Assessment of Multi-Sectoral Energy Transformation Pathways: Methodological Approach and Case

Study for Germany, Sustainability 2020. E E

ozone layer arcinogenic
== 2040 depletion effects
- 2050 Human health:Human health:
non-carcino- ionising
ic effects diati
genic effects  radiatien (Junne et al. 2020)
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Energy System Optimisation Framework Backbone
= Network Model

= Highly adaptable structure . H{égH:d,fgen i {Azf‘—' .
= Various energy carriers and sectors ;ttly N

» Flexible spatial and temporal resolution .

= High technological detail fleattpump —

Combined heat

. and power plant
unit

- state
~ Heat grid

= Stochastic modelling N - -
. ' . unit )
= Opt|m|sat|0n D<§;stereservmr

. . Natural gas grid
» |Investment and operational planning
= Cost minimisation "
. ) Upp =

u Va rioous COﬂStralntS Zp]}’ffbﬂbility . (U}imCOSt + vfrt’lielCost + vjt!?rtUPCOSt + Ufr}iutdownCost + U;?FPCOSt + v??teCost + U];inalties )

f’t
. Open Source + ,UfmnCost. + UunitlnvesLCosL + ,UlineInvesLCosL
Helistd et al., Backbone — An Adaptable Energy Systems Modelling Framework, Energies 2019. See also https:/gitlab.vtt.fi/backbone/backbone. Chair of
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Multi-Objective Optimisation — General Principles

Consider simultaneous optimisation of multiple

real objective functions 1
2

Notion of optimum: set of Pareto-optimal solutions,
the so called Pareto-front

A solution is called Pareto-optimal if improvements
of one objective necessarily lead to deterioration of
another

Pareto
front

Pareto-optimal
solutions

Feasible
region

Non-optimal
@ solution

. . Infeasibl
= Preferences are key to making decisions between Snoﬁ,at?;ne
optimal alternatives R
= express preferences before (a priori) or after E
optimisation (a posteriori)
= express preferences and optimise iteratively (interactive)
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Augmented Epsilon-Constraint Method (AUGMECON)

= Advantages
» Each solution is Pareto-optimal
= Suited for a posteriori and interactive methods
= No convexity or continuity required
= Method
= Reformulate all but one objective to constraints

= |ntroduce slack variable for each constraint

;nin {fi(x), fo(x),. .., fr(x)} —  min (fj(il?)‘l‘czﬁi) st filx) +s; = Vie K\{j}

eV
ev * ieK

= Further developments improve performance for 4+ objectives and integer variables,
e.g. AUGMECON 2 and AUGMECON-R

Mavrotas, Effective implementation of the epsilon-constraint method in Multi-Objective Mathematical Programming problems, Applied Chair of
Mathematics and Computation 2009. UHR
Mavrotas and Florios, Animproved version of the augmented e-constraint method (AUGMECON2) for finding the exact pareto set in multi- E ne rgy Syst ems & UNIVERSITAT R U B
objective integer programming problems, Applied Mathematics and Computation 2013. .

Energy Economics BOCHUM

Niklas et al., A robust augmented e-constraint method (AUGMECON-R) for finding exact solutions of multi-objective linear programming
problems, Operational Research 2020.



Implementation



Cost

General Remarks

= Implementing AUGMECON with Backbone for the two objectives cost and CO2 emission
= Two parts: new features in Backbone and “external” python code with 4 steps to run different

versions of Backbone

= |llustrative purpose, method adaptable to more and other objectives
= Method is easily parallelisable, therefore scalable
» Large and complex systems

= Many objectives

Pareto front
® boundaries

Cost

Pareto front
® boundaries

Cost

Pareto front
® boundaries

Cost Pareto front Marginal CO,
boundaries abatement cost

Pareto-optimal N Pareto-optimal
AUGMECON N AUGMECON
solutions O~
° Y
[ J

solutions

CO, Emission

+ + +
Emission caps

CO, Emission

Emission caps

CO, Emission Emission caps CO, Emission
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Step 1 — Determine Pareto front boundaries

= “External”; Lexicographic optimisation

min cost(z) s.t. emission(z) = min emission(x)
X

zeV ev
min emission(z) s.t. cost(x) = min cost(x)
€V zeV
. Cost Pareto front
= New feature in Backbone ® boundaries

= Emission minimisation...

obj __probability . generationEmission startupEmission
Yoo, = fit
fit

penalties
7§ £.COs + Vs co, +Upy )

= _.with constrained cost

probability vomCost fuelCost startupCost shutdownCost rampCost stateCost
> \vre T TR gy T UL T Ur R
fit

omCost unitInvestCost inelnvestCos costLimi
+’Uf C T itL C Jrvl' | tC t<p Limit

CO,; Emission
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Step 2 — Decide on emission caps

= Decide on emission caps within boundaries from
Step 1, then all are feasible

= Number and distribution of solutions can well be
controlled for sufficiently regular models, as

desired by the modeller Cost

Pareto front
@ boundaries

Emission caps

CO, Emission
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Step 3 — Caluclate Pareto-optimal Solutions

= “External”: Run AUGMECON implementation once
for each emission cap from Step 2

= New feature in Backbone

= Add slack variable to cost objective... Cost

Dbj _ Obj
VAUGMECON — Ugg € 8

= . and reformulate emission constraint

probability generationEmission + ?)startupEmission _ . emissionCap +3
fit f,t,COq £,t,COg — PC0Oq -
f7 t

Pareto front

® boundaries

Pareto-optimal
AUGMECON
solutions

Emission caps

CO, Emission
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Step 4 — Conduct Further Analyses

Analyse emission reduction scenarios “as usual”

Approximate Pareto front from discrete solutions
(solid black line)

Vary assumptions to get different Pareto fronts
(dashed black lines)

Quantify trade-off between objectives, e.g. marginal
CO, abatement costs (orange bars)

Compare exogenous scenario to Pareto front and
analyse potential improvements (red dot and
arrows)

Cost
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Case Study



Western & Southern European Power System Model

= Power network model based on PyPSA-Eur z’,
= Including 11 countries '

Modelling one year at hourly resolution

WALES  ENG.

Investment planning for ‘ e
= Generation: solar PV, onshore & offshore wind, gas
= Storage: battery, hydrogen

Cost and demand assumptions for 2050*

Main limitations
» Electricity sector only
= Geographical boundaries

! Largely based on Pietzcker et al., Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonisation of the EU
power sector, Applied Energy 2021.

Horsch et al., PyPSA-Eur: An Open Optimisation Model of the European Transmission System, Energy Strategy Reviews 2018. (See also f Ch air Of
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Results — Pareto Front and Trade-0Offs

= Objectives' ranges
» 90..140 xi0° €

140 1 T —e— Pareto front

|+ marginal COy abatement cost

.1038\
= 0..5.2 x10et CO, 1301 b
= Marginal CO, abatement cost §
« 5..2000 €/t CO, &= 1201 z
- =
= CO, reductions of up to 90% at z 107 c
marginal abatement costs below z 107 _ :
e agpementeostobelow 38NN [ty :
I o O O T e S
\.\$ 10 g
90 1 ®
(J
|
0 1 2 3 1 5

emission (10° t CO2)
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Results — Further Analyses

= Generation and storage mix across
different CO, reduction scenarios

= Nuclear exit (BE, DE, ES) and sensitivity of
storage cost (battery + 25%, H, = 15%)

B 150 —o— base scenario
:§044' - m PHS + —+— high storage cost
= 0 [ | battery : —%— low storage cost
S e 2 140 1 nuclear exit
Z02

5]

g 1301
01 =

* =

| =

g 3 % 120

=

2 solar PV 4%

? 94 Il onshore wind © 110+

g Il offshore wind

s W other RES 100,

&1 B natural gas

? I nuclear

'% N coal 901

<0 CcococCcoococooCcoOCoooQooo o

O N © 0 O N f O 0 O DD W I © fF N A - O
emission / maximum optimal emission (%) emission (10° t CO2)
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Conclusion & Outlook



Conclusion & Outlook

= The implementation enables for energy systems to
» determine cost-emission-optimal solutions and their objective range and
= further analyse and compare scenarios, e.g. regarding trade-offs or assumptions.

= The implementation is adaptable and scalable to various energy systems and objectives.

Future work

= Combine life cycle assessment and energy system modelling — see Sophie Pathe’s work®
= Include more objectives and improve algorithm for that

= Ease exploration of 4+D Pareto front to support decision making

1 Pathe, S. & Bertsch, V. (2021) Electricity system expansion planning of the Rheinish mining area considering environmental impacts by Chair of

using multi-criteria-optimization. Work in progress.
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Thank you for your attention!



